A Basic Explanation Of Associative Rule Learing

Akshansh Jain has some notes on associative rules:

Support tells us that how frequent is an item, or an itemset, in all of the data. It basically tells us how popular an itemset is in the given dataset. For example, in the above-given dataset, if we look at Learning Spark, we can calculate its support by taking the number of transactions in which it has occurred and dividing it by the total number of transactions.

Support{Learning Spark} = 4/5
Support{Programming in Scala} = 2/5
Support{Learning Spark, Programming in Scala} = 1/5

Support tells us how important or interesting an itemset is, based on its number of occurrences. This is an important measure, as in real data there are millions and billions of records, and working on every itemset is pointless, as in millions of purchases if a user buys Programming in Scala and a cooking book, it would be of no interest to us.

Read the whole thing.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Multi-Threaded R With Microsoft R Client

David Parr shows us how to get started with Microsoft R Client and performs some quick benchmarking: This message will pop up, and it’s worth noting as it’s got some information in it that you might need to think about: It’s worth noting that right now Microsoft r Client is lagging behind the current R version, and […]

Read More


April 2018
« Mar May »