Visualizing Logistic Regression In Action

Sebastian Sauer shows using ggplot2 visuals what happens when there are interaction effects in a logistic regression:

Of course, probabilities greater 1 do not make sense. That’s the reason why we prefer a “bended” graph, such as the s-type ogive in logistic regression. Let’s plot that instead.

First, we need to get the survival probabilities:

d %>% mutate(pred_prob = predict(glm1, type = "response")) -> d

Notice that type = "response gives you the probabilities of survival (ie., of the modeled event).

Read the whole thing.

Related Posts

Combining Plots In R With cowplot

Abdul Majed Raja shows how to use the cowplot library in R to merge together independent plots into a single image: The way it works in cowplot is that, we have assign our individual ggplot-plots as an R object (which is by default of type ggplot). These objects are finally used by cowplot to produce […]

Read More

Classifying Texts With Naive Bayes

I continue my series on Naive Bayes with another hand-calculation post: Step two is, on the surface, pretty tough: how do we figure out if a set of words is a business phrase or a baseball phrase? We could try to think up a set of features. For example, how long is the phrase? How many unique […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30