Base Versus Simple Containment

Joe Obbish takes a crack at explaining the difference between base containment and simple containment for cardinality estimation:

We know that the first query will return 500k rows and the second query will return 0 rows. However, can SQL Server know that? Each statistics object only contains information about its own column. There’s no correlation between the UNIQUE_ID and MOD_FILTER columns, so there isn’t a way for SQL Server to know that the queries will return different estimates. The query optimizer can create an estimate based on the filters on the WHERE clause and on the histograms of the join columns, but there’s no foolproof way to do that calculation. The presence of the filters introduces uncertainty into the estimate, even with statistics that perfectly describe the data for each column. The containment assumption is all about the modeling assumption that SQL Server has to make to resolve that uncertainty.

It’s an interesting post aimed at trying to get you to think like a simplified cardinality estimator.  SQL Server doesn’t behave exactly like this, but it’s a good mental reference point.

Related Posts

How LSNs Get Generated

Stuart Moore looks at how SQL Server builds log sequence numbers: If you’ve ever dug down in the SQL Server transaction logs or had to build up restore chains, then you’ll have come across Log Sequence Numbers (LSNs). Ever wondered why they’re so large, why they all look suspiciously the same, why don’t they start […]

Read More

Row Goals On Anti-Joins

Paul White continues his row goals series: The optimizer assumes that people write a semi join (indirectly e.g. using EXISTS) with the expectation that the row being searched for will be found. An apply semi join row goal is set by the optimizer to help find that expected matching row quickly. For anti join (expressed e.g. using NOT EXISTS) the optimizer’s assumption is that […]

Read More


November 2017
« Oct Dec »