A/B Testing With R

Kevin Feasel

2017-11-27

R

Mira Celine Klein shows how to compare two versions of a feature (or advertising campaign or whatever) to determine if one is better than the other:

In comparison to other methods, conducting an A/B test does not require extensive statistical knowledge. Nevertheless, some caveats have to be taken into account.

When making a statistical decision, there are two possible errors (see also table 1): A Type I error means that we observe a significant result although there is no real difference between our groups. A Type II error means that we do not observe a significant result although there is in fact a difference. The Type I error can be controlled and set to a fixed number in advance, e.g., at 5%, often denoted as α or the significance level. The Type II error in contrast cannot be controlled directly. It decreases with the sample size and the magnitude of the actual effect. When, for example, one of the designs performs way better than the other one, it’s more likely that the difference is actually detected by the test in comparison to a situation where there is only a small difference with respect to the target metric. Therefore, the required sample size can be computed in advance, given α and the minimum effect size you want to be able to detect (statistical power analysis). Knowing the average traffic on the website you can get a rough idea of the time you have to wait for the test to complete. Setting the rule for the end of the test in advance is often called “fixed-horizon testing”.

Click through for more, including a sample with code.  H/T R-Bloggers

Related Posts

Solving The Monty Hall Problem With R

Miroslav Rajter builds a Monty Hall problem simulator using R: The original and most simple scenario of the Monty Hall problem is this: You are in a prize contest and in front of you there are three doors (A, B and C). Behind one of the doors is a prize (Car), while behind others is […]

Read More

Control Table Keys In cdata

John Mount announces a new feature in the cdata package: In our cdata R package and training materials we emphasize the record-oriented thinking and how to design a transform control table. We now have an additional exciting new feature: control table keys.The user can now control which columns of a cdata control table are the keys, including now using composite keys (that is […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930