A/B Testing With R

Mira Celine Klein shows how to compare two versions of a feature (or advertising campaign or whatever) to determine if one is better than the other:

In comparison to other methods, conducting an A/B test does not require extensive statistical knowledge. Nevertheless, some caveats have to be taken into account.

When making a statistical decision, there are two possible errors (see also table 1): A Type I error means that we observe a significant result although there is no real difference between our groups. A Type II error means that we do not observe a significant result although there is in fact a difference. The Type I error can be controlled and set to a fixed number in advance, e.g., at 5%, often denoted as α or the significance level. The Type II error in contrast cannot be controlled directly. It decreases with the sample size and the magnitude of the actual effect. When, for example, one of the designs performs way better than the other one, it’s more likely that the difference is actually detected by the test in comparison to a situation where there is only a small difference with respect to the target metric. Therefore, the required sample size can be computed in advance, given α and the minimum effect size you want to be able to detect (statistical power analysis). Knowing the average traffic on the website you can get a rough idea of the time you have to wait for the test to complete. Setting the rule for the end of the test in advance is often called “fixed-horizon testing”.

Click through for more, including a sample with code.  H/T R-Bloggers

Related Posts

An Introduction To seplyr

John Mount guest blogs on the Revolutions blog about seplyr: seplyr is an R package that supplies improved standard evaluation interfaces for many common data wrangling tasks. The core of seplyr is a re-skinning of dplyr‘s functionality to seplyr conventions (similar to how stringr re-skins the implementing package stringi). Read on for a couple of examples of where seplyr can make it easier for you to […]

Read More

R In Linux For Windows

David Smith shows how to install and use R in the Windows Subsystem for Linux: R has been available for Windows since the very beginning, but if you have a Windows machine and want to use R within a Linux ecosystem, that’s easy to do with the new Fall Creator’s Update (version 1709). If you […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *


November 2017
« Oct Dec »