Data Wrangling At Scale

Kevin Feasel

2017-11-21

R, Spark

John Mount has a short article showing off the cdata package:

Suppose we needed to un-pivot this data into a row oriented representation. Often big data transform steps can achieve a much higher degree of parallelization with “tall data”. With the cdata package this transform is easy and performant, as we show below.

Read the whole thing.

Related Posts

When Not to Use Spark

Ramandeep Kaur gives us several cases when it makes sense not to use Apache Spark: There can be use cases where Spark would be the inevitable choice. Spark considered being an excellent tool for use cases like ETL of a large amount of a dataset, analyzing a large set of data files, Machine learning, and […]

Read More

Visualizing with Heatmaps in R

Anisa Dhana shows how you can create a quick heatmap plot in R: To give your own colors use the scale_fill_gradientn function.ggplot(dat, aes(Age, Race)) + geom_raster(aes(fill = BMI)) + scale_fill_gradientn(colours=c("white", "red")) This is a quick example using ggplot2 but there are other heatmap libraries available too.

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930