Handling Imbalanced Data

Tom Fawcett shows us how to handle a tricky classification problem:

The primary problem is that these classes are imbalanced: the red points are greatly outnumbered by the blue.

Research on imbalanced classes often considers imbalanced to mean a minority class of 10% to 20%. In reality, datasets can get far more imbalanced than this. —Here are some examples:

  1. About 2% of credit card accounts are defrauded per year. (Most fraud detection domains are heavily imbalanced.)
  2. Medical screening for a condition is usually performed on a large population of people without the condition, to detect a small minority with it (e.g., HIV prevalence in the USA is ~0.4%).
  3. Disk drive failures are approximately ~1% per year.
  4. The conversion rates of online ads has been estimated to lie between 10-3 to 10-6.
  5. Factory production defect rates typically run about 0.1%.

Many of these domains are imbalanced because they are what I call needle in a haystackproblems, where machine learning classifiers are used to sort through huge populations of negative (uninteresting) cases to find the small number of positive (interesting, alarm-worthy) cases.

Read on for some good advice on how to handle imbalanced data.

Related Posts

MAPE and Its Flaws

Jan Fischer takes us through Mean Absolute Percentage Error as a measure of forecast quality: Particular small actual values bias the MAPE.If any true values are very close to zero, the corresponding absolute percentage errors will be extremely high and therefore bias the informativity of the MAPE (Hyndman & Koehler 2006). The following graph clarifies this […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930