Unsupervised Decision Trees

William Vorhies describes what unsupervised decision trees are:

In anomaly detection we are attempting to identify items or events that don’t match the expected pattern in the data set and are by definition rare.  The traditional ‘signature based’ approach widely used in intrusion detection systems creates training data that can be used in normal supervised techniques.  When an attack is detected the associated traffic pattern is recorded and marked and classified as an intrusion by humans.  That data then combined with normal data creates the supervised training set.

In both supervised and unsupervised cases decision trees, now in the form of random forests are the weapon of choice.  Decision trees are nonparametric; they don’t make an assumption about the distribution of the data.  They’re great at combining numeric and categoricals, and handle missing data like a champ.  All types of anomaly data tend to be highly dimensional and decision trees can take it all in and offer a reasonably clear guide for pruning back to just what’s important.

To be complete, there is also category of Semi-Supervised anomaly detection in which the training data consists only of normal transactions without any anomalies.  This is also known as ‘One Class Classification’ and uses one class SVMs or autoencoders in a slightly different way not discussed here.

Interesting reading.  I’d had no idea that unsupervised decision trees were even a thing.

Related Posts

Reviewing The Team Data Science Process

I am starting a new series on launching a data science project, and my presentation quickly veers into a pessimistic place: The concept of “clean” data is appealing to us—I have a talk on the topic and spend more time than I’m willing to admit trying to clean up data.  But the truth is that, in a […]

Read More

Methods To Improve Model Accuracy

Tristan Robinson shows how to go back to the drawing board when your model’s accuracy isn’t cutting it: One of the reoccurring principles that appears with machine learning is that of Ockham’s razor, which states that the best models are simple models that fit the data well; this is not an irrefutable principle of logic, but […]

Read More


October 2017
« Sep Nov »