Tokenizing Text With R

Rachael Tatman shows how to tokenize a set of text as the first step in a natural language processing experiment:

In this tutorial you’ll learn how to:

  • Read text into R
  • Select only certain lines
  • Tokenize text using the tidytext package
  • Calculate token frequency (how often each token shows up in the dataset)
  • Write reusable functions to do all of the above and make your work reproducible

For this tutorial we’ll be using a corpus of transcribed speech from bilingual children speaking in English.  You can find more information on this dataset and download it here.

It’s a nice tutorial, especially because the data set is a bit of a mess.

Related Posts

Building an Image Classifier with PyTorch

Rogier van der Geer shows how you can use PyTorch to build out a Convolutional Neural Network for image classification: The tool that we are going to use to make a classifier is called a convolutional neural network, or CNN. You can find a great explanation of what these are right here on wikipedia. But we […]

Read More

xgboost and Small Numbers of Subtrees

John Mount covers an interesting issue you can run into when using xgboost: While reading Dr. Nina Zumel’s excellent note on bias in common ensemble methods, I ran the examples to see the effects she described (and I think it is very important that she is establishing the issue, prior to discussing mitigation).In doing that I ran into one more […]

Read More


August 2017
« Jul Sep »