The Value Of Tidyeval

Kevin Feasel



Bruno Rodrigues explains why he likes tidyeval:

Last year, this column, let’s call it spam, had values 1 for good and 0 for bad. This year the column is called Spam and the values are 1 and 2. When I found out that this was the source of the problem, I just had to change the arguments of my functions from

generate_spam_plot(dataset = data2016, column = spam, value = 1)
generate_spam_plot(dataset = data2016, column = spam, value = 0)


generate_spam_plot(dataset = data2017, column = Spam, value = 1)
generate_spam_plot(dataset = data2017, column = Spam, value = 2)

without needing to change anything else. This is why I use tidyeval; without it, writing a function such as genereta_spam_plot would not be easy. It would be possible, but not easy.

Read the whole thing.

Related Posts

Using Cohen’s D for Experiments

Nina Zumel takes us through Cohen’s D, a useful tool for determining effect sizes in experiments: Cohen’s d is a measure of effect size for the difference of two means that takes the variance of the population into account. It’s defined asd = | μ1 – μ2 | / σpooledwhere σpooled is the pooled standard deviation over both cohorts. […]

Read More

Comparing Iterator Performance in R

Ulrik Stervbo has a performance comparison for for, apply, and map functions in R: It is usually said, that for– and while-loops should be avoided in R. I was curious about just how the different alternatives compare in terms of speed. The first loop is perhaps the worst I can think of – the return vector is […]

Read More


August 2017
« Jul Sep »