Understanding K-Means Clustering

Chaitanya Sagar has a good explanation of the assumptions k-means clustering makes:

Why do we assume in the first place? The answer is that making assumptions helps simplify problems and simplified problems can then be solved accurately. To divide your dataset into clusters, one must define the criteria of a cluster and those make the assumptions for the technique. K-Means clustering method considers two assumptions regarding the clusters – first that the clusters are spherical and second that the clusters are of similar size. Spherical assumption helps in separating the clusters when the algorithm works on the data and forms clusters. If this assumption is violated, the clusters formed may not be what one expects. On the other hand, assumption over the size of clusters helps in deciding the boundaries of the cluster. This assumption helps in calculating the number of data points each cluster should have. This assumption also gives an advantage. Clusters in K-means are defined by taking the mean of all the data points in the cluster. With this assumption, one can start with the centers of clusters anywhere. Keeping the starting points of the clusters anywhere will still make the algorithm converge with the same final clusters as keeping the centers as far apart as possible.

Read on as Chaitanya shows several examples; the polar coordinate transformation was quite interesting.  H/T R-Bloggers

Related Posts

An Introduction To seplyr

John Mount guest blogs on the Revolutions blog about seplyr: seplyr is an R package that supplies improved standard evaluation interfaces for many common data wrangling tasks. The core of seplyr is a re-skinning of dplyr‘s functionality to seplyr conventions (similar to how stringr re-skins the implementing package stringi). Read on for a couple of examples of where seplyr can make it easier for you to […]

Read More

Matrix Transposition In T-SQL

Phil Factor has some fun transposing a matrix using T-SQL: What I’m doing is simply converting the table into its JSON form, and then using this to create a table using the multi-row VALUES  syntax which paradoxically allows expressions. The expression I’m using is JSON_Value, which allows me do effectively dictate the source within the table, via […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031