Explaining Singular Value Decomposition

Tim Bock explains how Singular Value Decomposition works:

The table above is a matrix of numbers. I am going to call it Z. The singular value decomposition is computed using the svd function. The following code computes the singular value decomposition of the matrix Z, and assigns it to a new object called SVD, which contains one vector, d, and two matrices, u and v. The vector, d, contains the singular values. The first matrix, u, contains the left singular vectors, and vcontains the right singular vectors. The left singular vectors represent the rows of the input table, and the right singular vectors represent their columns.

Tim includes R scripts to follow along, and for this topic I definitely recommend following along.

Related Posts

AzureR Packages In Cran

David Smith points out that the Azure packages for R are now in CRAN: The suite of AzureR packages for interfacing with Azure services from R is now available on CRAN. If you missed the earlier announcements, this means you can now use the install.packages function in R to install these packages, rather than having to install from the […]

Read More

Solving Naive Bayes By Hand

I have a post that requires math and is meaner toward the Buffalo Bills than I normally am: Trust the ProcessThere are three steps to the process of solving the simplest of Naive Bayes algorithms. They are:1. Find the probability of winning a game (that is, our prior probability).2. Find the probability of winning given each input variable: whether Josh Allen starts the game, whether the team is […]

Read More


August 2017
« Jul Sep »