Reducing Dimensionality

Antoine Guillot explains some of the basic concepts of variable reduction in a data analysis:

Each of these people can be represented as points in a 3 Dimensional space. With a gross approximation, each people is in a 50*50*200 (cm) cube. If we use a resolution of 1cm and three color channels, then can be represented by 1,000,000 variables.
On the other hand, the shadow is only in 2 dimensions and in black and white, so each shadow only needs 50*200=10,000 variables.
The number of variables was divided by 100 ! And if your goal is to detect human vs cat, or even men vs women, the data from the shadow may be enough.

Read on for intuitive discussions of techniques like principal component analysis and linear discriminant analysis.  H/T R-Bloggers

Related Posts

Online Learning Algorithms

Xin Hunt describes the benefits of online learning algorithms: A few examples of classical online learning algorithms include recursive least squares, stochastic gradient descent and multi-armed bandit algorithms like Thompson sampling. Many online algorithms (including recursive least squares and stochastic gradient descent) have offline versions. These online algorithms are usually developed after the offline version, […]

Read More

Installing The Azure ML Workbench

Leila Etaati walks us through setting up the Azure ML workbench: In Microsoft ignite 2017, Azure ML team announce new on-premises tools for doing machine learning. this tools much more comprehensive as it provides 1- a workspace helps data wrangling 2- Data Visualization 3-Easy to deploy 4-Support Python codes in this post and next posts, I […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031