Reducing Dimensionality

Antoine Guillot explains some of the basic concepts of variable reduction in a data analysis:

Each of these people can be represented as points in a 3 Dimensional space. With a gross approximation, each people is in a 50*50*200 (cm) cube. If we use a resolution of 1cm and three color channels, then can be represented by 1,000,000 variables.
On the other hand, the shadow is only in 2 dimensions and in black and white, so each shadow only needs 50*200=10,000 variables.
The number of variables was divided by 100 ! And if your goal is to detect human vs cat, or even men vs women, the data from the shadow may be enough.

Read on for intuitive discussions of techniques like principal component analysis and linear discriminant analysis.  H/T R-Bloggers

Related Posts

Python and R Data Reshaping

John Mount takes us through a couple of data shaping packages: The advantages of data_algebra and cdata are: – The user specifies their desired transform declaratively by example and in data. What one does is: work an example, and then write down what you want (we have a tutorial on this here).– The transform systems can print what a transform is going to […]

Read More

When to Use Different ML Algorithms

Stefan Franczuk explains the different categories of machine learning algorithms available in Talend: Clustering is the task of grouping together a set of objects in such a way, that objects in the same group are more similar to each other than to those in other groups. Clustering is really useful for identify separate groups and […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031