Linear Prediction Confidence Region Flare-Out

John Cook explains why the confidence region of a tracked object flares out instead of looking conical (or some other shape):

Suppose you’re tracking some object based on its initial position x0 and initial velocity v0. The initial position and initial velocity are estimated from normal distributions with standard deviations σx and σv. (To keep things simple, let’s assume our object is moving in only one dimension and that the distributions around initial position and velocity are independent.)

The confidence region for the object flares out over time, something like the bell of a trumpet.

Read on for the explanation.

Related Posts

Defining TF-IDF

Bruno Stecanella explains the concept behind TF-IDF: TF-IDF was invented for document search and information retrieval. It works by increasing proportionally to the number of times a word appears in a document, but is offset by the number of documents that contain the word. So, words that are common in every document, such as this, what, and if, rank […]

Read More

Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python: Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text. In a more practical sense, our objective here is to take a text […]

Read More


June 2017
« May Jul »