Bayesian Average

Jelte Hoekstra has a fun post applying the Bayesian average to board game ratings:

Maybe you want to explore the best boardgames but instead you find the top 100 filled with 10/10 scores. Experience many such false positives and you will lose faith in the rating system. Let’s be clear this isn’t exactly incidental either: most games have relatively few votes and suffer from this phenomenon.

The Bayesian average

Fortunately, there are ways to deal with this. BoardGameGeek’s solution is to replace the average by the Bayesian average. In Bayesian statistics we start out with a prior that represents our a priori assumptions. When evidence comes in we can update this prior, computing a so called posterior that reflects our updated belief.

Applied to boardgames this means: if we have an unrated game we might as well assume it’s average. If not, the ratings will have to convince us otherwise. This certainly removes outliers as we will see below!

This is a rather interesting article and you can easily apply it to other rating systems as well.

Related Posts

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More

Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R: One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras. In Python’s words, it is the shape of the array. To do a binary […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930