Facial Recognition With Amazon Rekognition

Chris Adzima describes how his law enforcement agency uses Amazon Rekognition for facial recognition:

Setup was fairly straightforward. In the Washington County jail management system (JMS), we have an archive of mugshots going back to 2001. We needed to get the mugshots (all 300,000 of them) into Amazon S3. Then we need to index them all in Amazon Rekognition, which took about 3 days.

Our JMS allows us to tag the shots with the following information: front view or side view, scars, marks, or tattoos. We only wanted the front view, so we used those tags to get a list of just those.

Read on for sample implementation details, including moving images to S3, building the facial recognition “database,” and using it.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Interacting With SQL Server From Pandas

Tomaz Kastrun shows how to use pyodbc to interact with a SQL Server database from Pandas: In the SQL Server Management Studio (SSMS), the ease of using external procedure sp_execute_external_script has been (and still will be) discussed many times. But the reason for this short blog post is the fact that, changing Python environments using Conda package/module management within Microsoft […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930