Facial Recognition With Amazon Rekognition

Chris Adzima describes how his law enforcement agency uses Amazon Rekognition for facial recognition:

Setup was fairly straightforward. In the Washington County jail management system (JMS), we have an archive of mugshots going back to 2001. We needed to get the mugshots (all 300,000 of them) into Amazon S3. Then we need to index them all in Amazon Rekognition, which took about 3 days.

Our JMS allows us to tag the shots with the following information: front view or side view, scars, marks, or tattoos. We only wanted the front view, so we used those tags to get a list of just those.

Read on for sample implementation details, including moving images to S3, building the facial recognition “database,” and using it.

Related Posts

The Microsoft Team Data Science Process Lifecycle Versus CRISP-DM

Melody Zacharias compares Microsoft’s Team Data Science Process lifecycle with the CRISP-DM process: As I pointed out in my previous blog, the TDSP lifecycle is made up of five iterative stages: Business Understanding Data Acquisition and Understanding Modeling Deployment Customer Acceptance This is not very different from the six major phases used by the Cross […]

Read More

Exploratory Analysis With Hockey Data In Power BI

Stacia Varga digs into her hockey data set a bit more: Once I know whether a variable is numerical or categorical, I can compute statistics appropriately. I’ll be delving into additional types of statistics later, but the very first, simplest statistics that I want to review are: Counts for a categorical variable Minimum and maximum […]

Read More


June 2017
« May Jul »