Understanding Random Forests

Manish Kumar Barnwal explains how random forest algorithms work:

Say our dataset has 1,000 rows and 30 columns. There are two levels of randomness in this algorithm:

  • At row level: Each of these decision trees gets a random sample of the training data (say 10%) i.e. each of these trees will be trained independently on 100 randomly chosen rows out of 1,000 rows of data. Keep in mind that each of these decision trees is getting trained on 100 randomly chosen rows from the dataset i.e they are different from each other in terms of predictions.
  • At column level: The second level of randomness is introduced at the column level. Not all the columns are passed into training each of the decision trees. Say we want only 10% of columns to be sent to each tree. This means a randomly selected 3 column will be sent to each tree. So for the first decision tree, may be column C1, C2 and C4 were chosen. The next DT will have C4, C5, C10 as chosen columns and so on.

This  is a nice article and includes cases when not to use random forests.

Related Posts

Exploratory Data Analysis with inspectdf

Laura Ellis continues a dive into Exploratory Data Analysis, this time using the inspectdf package: I like this package because it’s got a lot of functionality and it’s incredibly straightforward to use. In short, it allows you to understand and visualize column types, sizes, values, value imbalance & distributions as well as correlations. Better yet, […]

Read More

Non-Linear Classifiers with Support Vector Machines

Rahul Khanna continues a series on support vector machines: In this blog post, we will look at a detailed explanation of how to use SVM for complex decision boundaries and build Non-Linear Classifiers using SVM. The primary method for doing this is by using Kernels. In linear SVM we find margin maximizing hyperplane with features […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930