Multi-Channel Attribution With R

Kevin Feasel

2017-06-01

R

Sergey Bryl walks through some of the difficulties of the multi-channel attribution solution he came up with before:

The main steps that we will review are the following:

  • splitting paths depending on purchases counts

  • replacing some channels/touch points

  • a unique channel/touchpoint case

  • consequent duplicated channels in the path and higher order Markov chains

  • paths that haven’t led to a conversion

  • customer journey duration

  • attributing revenue and costs comparisons

There’s a lot there, and I like the practical explanations of issues when dealing with a real business problem.

Related Posts

Biases in Tree-Based Models

Nina Zumel looks at tree-based ensembling models like random forest and gradient boost and shows that they can be biased: In our previous article , we showed that generalized linear models are unbiased, or calibrated: they preserve the conditional expectations and rollups of the training data. A calibrated model is important in many applications, particularly when financial data […]

Read More

R 3.6.1 Available

David Smith notes a new version of R is available: On July 5, the R Core Group released the source code for the latest update to R, R 3.6.1, and binaries are now available to download for Windows, Linux and Mac from your local CRAN mirror. R 3.6.1 is a minor update to R that fixes a few bugs. […]

Read More

Categories

June 2017
MTWTFSS
« May Jul »
 1234
567891011
12131415161718
19202122232425
2627282930