Versioning R Code In SQL Server

Steph Locke shows how to combine R models and SQL Server temporal tables for versioning:

If we’re storing our R model objects in SQL Server then we can utilise another SQL Server capability, temporal tables, to take the pain out of versioning and make it super simple.

Temporal tables will track changes automatically so you would overwrite the previous model with the new one and it would keep a copy of the old one automagically in a history table. You get to always use the latest version via the main table but you can then write temporal queries to extract any version of the model that’s ever been implemented. Super neat!

I do exactly this.  In my case, it’s to give me the ability to review those models after the fact once I know whether they generated good outcomes or not.

Related Posts

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More

Categories