Visualizing Emergency Room Visits

Eugene Joh has a great blog post showing how to parse ICD-9 codes using regular expressions and then visualize the results as a treemap:

It looks like there is a header/title at [1], numeric grouping  at [2] “1.\tINFECTIOUS AND PARASITIC DISEASES”,  subgrouping by ICD-9 code ranges, at [3] “Intestinal infectious diseases (001-009)” and then 3-digit ICD-9 codes followed by a specific diagnosis, at [10] “007\tOther protozoal intestinal diseases”. At the end we want to produce three separate data frames that we’ll categorize as:

  1. Groups: the title which contains the general diagnosis grouping

  2. Subgroups: the range of ICD-9 codes that contain a certain diagnosis subgroup

  3. Classification: the specific 3-digit ICD-9 code that corresponds with a diagnosis

It’s a beefy article full of insight.

Related Posts

Inline Operators In R With wrapr

John Mount shows how to use inline operators in R with the wrapr package: The above code is assuming you have the wrapr package attached via already having run library('wrapr'). Notice we picked R-related operator names. We stayed away from overloading the + operator, as the arithmetic operators are somewhat special in how they dispatch in R. The goal wasn’t […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Categories