Fisher’s Exact Test

Mala Mahadevan explains Fisher’s Exact Test and provides examples in T-SQL and R:

The decision rule in two sample tests of hypothesis depends on three factors :
1 Whether the test is upper, lower or two tailed (meaning the comparison is greater, lesser or both sides of gender and speaker count)
2 The level of significance or degree of accuracy needed,
3 The form of test statistic.
Our test here is to just find out if gender and speaker count are related so it is a two tailed test. The level of significance we can use is the most commonly used 95% which is also the default in R for Fischer’s Test. The form of the test statistic is P value. So our decision rule would be that gender and speaker category are related if P value is less than 0.05.

Click through for the R code followed by a code sample which should explain why you don’t want to do it in T-SQL.

Related Posts

MAPE and Its Flaws

Jan Fischer takes us through Mean Absolute Percentage Error as a measure of forecast quality: Particular small actual values bias the MAPE.If any true values are very close to zero, the corresponding absolute percentage errors will be extremely high and therefore bias the informativity of the MAPE (Hyndman & Koehler 2006). The following graph clarifies this […]

Read More

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

1 Comment

  • Mala on 2017-05-25

    Honored for the mention. You are among analytics folks i follow and have great respect for. Thank you.

Comments are closed