Three-Way Variance Analysis

Bogdan Anastasiei shows how to perform a three-way variance analysis when the third-order and second-order effects are both statistically significant:

In the formula above the interaction effect is, of course, dosegendertype. The ANOVA results can be seen below (we have only kept the line presenting the third-order interaction effect).

Df Sum Sq Mean Sq F value   Pr(>F)
dose:gender:type   2    187    93.4  22.367 3.81e-10

The interaction effect is statistically significant: F(2)=22.367, p<0.01. In other words, we do have a third-order interaction effect. In this situation, it is not advisable to report and interpret the second-order interaction effects (they could be misleading). Therefore, we are going to compute the simple second-order interaction effects.

This is definitely not a trivial article, but there are useful techniques in it.

Related Posts

ggplot2 Geoms And Aesthetics

Tyler Rinker digs into ggplot2’s geoms and aesthetics: I thought it my be fun to use the geoms aesthetics to see if we could cluster aesthetically similar geoms closer together. The heatmap below uses cosine similarity and heirarchical clustering to reorder the matrix that will allow for like geoms to be found closer to one […]

Read More

Multi-Class Text Classification In Python

Susan Li has a series on multi-class text classification in Python.  First up is analysis with PySpark: Our task is to classify San Francisco Crime Description into 33 pre-defined categories. The data can be downloaded from Kaggle. Given a new crime description comes in, we want to assign it to one of 33 categories. The classifier […]

Read More