Three-Way Variance Analysis

Bogdan Anastasiei shows how to perform a three-way variance analysis when the third-order and second-order effects are both statistically significant:

In the formula above the interaction effect is, of course, dosegendertype. The ANOVA results can be seen below (we have only kept the line presenting the third-order interaction effect).

Df Sum Sq Mean Sq F value   Pr(>F)
dose:gender:type   2    187    93.4  22.367 3.81e-10

The interaction effect is statistically significant: F(2)=22.367, p<0.01. In other words, we do have a third-order interaction effect. In this situation, it is not advisable to report and interpret the second-order interaction effects (they could be misleading). Therefore, we are going to compute the simple second-order interaction effects.

This is definitely not a trivial article, but there are useful techniques in it.

Related Posts

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More

Categories