Getting Execution Plans In Spark

Anubhav Tarar shows how to get an execution plan for a Spark job:

There are three types of logical plans:

  1. Parsed logical plan.
  2. Analyzed logical plan.
  3. Optimized logical plan.

Analyzed logical plans go through a series of rules to resolve. Then, the optimized logical plan is produced. The optimized logical plan normally allows Spark to plug in a set of optimization rules. You can plug in your own rules for the optimized logical plan.

Click through for the details.

Related Posts

Handling Missing Data In Spark

Igor Sorokin explains how to implement DataFrameNaFunctions: Unfortunately, C&P comes in to play, therefore, if at some point in time a default value for ‘trackLength’ is also required, you may end up changing both of these methods. Another disadvantage is that if another similar method, which requires the same default values, is added, code duplication […]

Read More

Diving Into Spark’s Cost-Based Optimizer

Ron Hu, et al, explain how Spark’s cost-based optimizer works: At its core, Spark’s Catalyst optimizer is a general library for representing query plans as trees and sequentially applying a number of optimization rules to manipulate them. A majority of these optimization rules are based on heuristics, i.e., they only account for a query’s structure and ignore […]

Read More

Categories