R Is Bad For You?

Kevin Feasel

2017-05-18

R

Bill Vorhies lays out a controversial argument:

I have been a practicing data scientist with an emphasis on predictive modeling for about 16 years.  I know enough R to be dangerous but when I want to build a model I reach for my SAS Enterprise Miner (could just as easily be SPSS, Rapid Miner or one of the other complete platforms).

The key issue is that I can clean, prep, transform, engineer features, select features, and run 10 or more model types simultaneously in less than 60 minutes (sometimes a lot less) and get back a nice display of the most accurate and robust model along with exportable code in my selection of languages.

The reason I can do that is because these advanced platforms now all have drag-and-drop visual workspaces into which I deploy and rapidly adjust each major element of the modeling process without ever touching a line of code.

I have almost exactly the opposite thought on the matter:  that drag-and-drop development is intolerably slow; I can drag and drop and connect and click and click and click for a while, or I can write a few lines of code.  Nevertheless, I think Bill’s post is well worth reading.

Related Posts

R In Linux For Windows

David Smith shows how to install and use R in the Windows Subsystem for Linux: R has been available for Windows since the very beginning, but if you have a Windows machine and want to use R within a Linux ecosystem, that’s easy to do with the new Fall Creator’s Update (version 1709). If you […]

Read More

A Hack For Dynamic ML Services Result Sets

Dave Mason has put together a solution to his dynamic data frame naming problem: We can take those names and R types, string them together, and “convert” them to SQL data types. (Mapping data types from one language to another is waaaay outside the scope of this post. Lines 11-13 are quick and dirty, just […]

Read More

Categories