Interpreting Regression Coefficients

Steph Locke explains what beta values on parameters in a regression actually signify:

When we read the list of coefficients, here is how we interpret them:

  • The intercept is the starting point – so if you knew no other information it would be the best guess.

  • Each coefficient multiplies the corresponding column to refine the prediction from the estimate. It tells us how much one unit in each column shifts the prediction.

  • When you use a categorical variable, in R the intercept represents the default position for a given value in the categorical column. Every other value then gets a modifier to the base prediction.

Linear regression is easy, but the real value here is Steph’s explanation of logistic regression coefficients.

Related Posts

Linear Programming in Python

Francisco Alvarez shows us an example of linear programming in Python: The first two constraints, x1 ≥ 0 and x2 ≥ 0 are called nonnegativity constraints. The other constraints are then called the main constraints. The function to be maximized (or minimized) is called the objective function. Here, the objective function is x1 + x2. Two classes of […]

Read More

Exploratory Data Analysis with inspectdf

Laura Ellis continues a dive into Exploratory Data Analysis, this time using the inspectdf package: I like this package because it’s got a lot of functionality and it’s incredibly straightforward to use. In short, it allows you to understand and visualize column types, sizes, values, value imbalance & distributions as well as correlations. Better yet, […]

Read More