Interpreting Regression Coefficients

Steph Locke explains what beta values on parameters in a regression actually signify:

When we read the list of coefficients, here is how we interpret them:

  • The intercept is the starting point – so if you knew no other information it would be the best guess.

  • Each coefficient multiplies the corresponding column to refine the prediction from the estimate. It tells us how much one unit in each column shifts the prediction.

  • When you use a categorical variable, in R the intercept represents the default position for a given value in the categorical column. Every other value then gets a modifier to the base prediction.

Linear regression is easy, but the real value here is Steph’s explanation of logistic regression coefficients.

Related Posts

Python and R Data Reshaping

John Mount takes us through a couple of data shaping packages: The advantages of data_algebra and cdata are: – The user specifies their desired transform declaratively by example and in data. What one does is: work an example, and then write down what you want (we have a tutorial on this here).– The transform systems can print what a transform is going to […]

Read More

When to Use Different ML Algorithms

Stefan Franczuk explains the different categories of machine learning algorithms available in Talend: Clustering is the task of grouping together a set of objects in such a way, that objects in the same group are more similar to each other than to those in other groups. Clustering is really useful for identify separate groups and […]

Read More

Categories