Interpreting Regression Coefficients

Steph Locke explains what beta values on parameters in a regression actually signify:

When we read the list of coefficients, here is how we interpret them:

  • The intercept is the starting point – so if you knew no other information it would be the best guess.

  • Each coefficient multiplies the corresponding column to refine the prediction from the estimate. It tells us how much one unit in each column shifts the prediction.

  • When you use a categorical variable, in R the intercept represents the default position for a given value in the categorical column. Every other value then gets a modifier to the base prediction.

Linear regression is easy, but the real value here is Steph’s explanation of logistic regression coefficients.

Related Posts

P-Hacking and Multiple Comparison Bias

Patrick David has a great article on hypothesis testing, p-hacking, and multiple comparison bias: The most important part of hypothesis testing is being clear what question we are trying to answer. In our case we are asking:“Could the most extreme value happen by chance?”The most extreme value we define as the greatest absolute AMVR deviation from […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Categories