K-Means Clustering In R

Raghavan Madabusi provides an example of how k-means clustering can help segment data points in an understandable manner:

Call Detail Record (CDR) is the information captured by the telecom companies during Call, SMS, and Internet activity of a customer. This information provides greater insights about the customer’s needs when used with customer demographics. Most of the telecom companies use CDR information for fraud detection by clustering the user profiles, reducing customer churn by usage activity, and targeting the profitable customers by using RFM analysis.

In this blog, we will discuss about clustering of the customer activities for 24 hours by using unsupervised K-means clustering algorithm. It is used to understand segment of customers with respect to their usage by hours.

For example, customer segment with high activity may generate more revenue. Customer segment with high activity in the night hours might be fraud ones.

This article won’t really explain k-means clustering in any detail, but it does give you an example to apply the technique using R.

Related Posts

WVPlots

Nina Zumel announces a new version of WVPlots on CRAN: WVPlots was originally a catch-all package of ggplot2 visualizations that we at Win-Vector tended to use repeatedly, and wanted to turn into “one-liners.” A consequence of this is that the older visualizations had our preferred color schemes hard-coded in. More recent additions to the package sometimes had palette […]

Read More

Icon Maps in R

Laura Ellis shows how you can build maps full of little icons: That was ok, but we should try to make the images more aesthetically pleasing using the magick package. We make each image transparent with the image_transparent() function. We can also make the resulting image a specific color with image_colorize(). I then saved the […]

Read More

Categories