Advice For A Budding Data Scientist

Charles Parker riffs off of an Edsger Dijkstra note:

It’s still early days for machine learning. The bounds and guidelines about what is possible or likely are still unknown in a lot of places, and bigger projects that test more of those limitations are more likely to fail. As a fledgling data engineer, especially in the industry, it’s almost certainly the more prudent course to go for the “low-hanging fruit” — easy-to-find optimizations that have real world impact for your organization. This is the way to build trust among skeptical colleagues and also the way to figure out where those boundaries are, both for the field and for yourself.

As a personal example, I was once on a project where we worked with failure data from large machines with many components. The obvious and difficult problem was to use regression analysis to predict the time to failure for a given part. I had some success with this, but nothing that ever made it to production. However, a simple clustering analysis that grouped machines by the frequency of replacement for all parts had some lasting impact; this enabled the organization to “red flag” machines that fell into “high replacement” group where the users may have been misusing the machines and bring these users in for training.

There’s some good advice.  Also read the linked Dijkstra note; even in bullet point form, he was a brilliant guy.

Related Posts

T-SQL Tuesday Roundup

Mala Mahadevan has the roundup for this month’s T-SQL Tuesday: Thank you to all of you for taking time to contribute. I like the suggestion made by Glenda Gable on being partners to help with accountability on our goals. If anyone feels up to this just leave a comment below, we can set up a […]

Read More

Matrix Transposition In T-SQL

Phil Factor has some fun transposing a matrix using T-SQL: What I’m doing is simply converting the table into its JSON form, and then using this to create a table using the multi-row VALUES  syntax which paradoxically allows expressions. The expression I’m using is JSON_Value, which allows me do effectively dictate the source within the table, via […]

Read More