Default Column Storage

Paul Randal explains how default column values are stored:

And selecting the initial 10 rows can be demonstrated to return the 3rd column using the initial default set in step 3. (It makes no difference if any rows are added between steps 3 and 4.)

This means that there *must* be two default values stored when a new column is added: one for the set of already-existing rows that don’t have the new column and one for any new rows. Initially these two default values will be the same, but the one for new rows can change (e.g. in steps 4 and 5 above) with breaking the old rows. This works because after the new column is added (step 3 above), it’s impossible to add any more rows that *don’t* have the new column.

And this is exactly how it works. Let’s investigate!

In typical Paul Randal fashion, this is both a look at internals and an interesting explanation.

Related Posts

Diving Into Spark’s Cost-Based Optimizer

Ron Hu, et al, explain how Spark’s cost-based optimizer works: At its core, Spark’s Catalyst optimizer is a general library for representing query plans as trees and sequentially applying a number of optimization rules to manipulate them. A majority of these optimization rules are based on heuristics, i.e., they only account for a query’s structure and ignore […]

Read More

Searching In Windbg

Ewald Cress shows us how to search for a four-byte pattern in the Windows debugger: Cracking open Windbg on 2016 SP1 with the s command to look for byte patterns yielded nothing of value. Maybe something has changed with conventions or indirection? Nope, no joy in 2014 either. In the end, it took the extremely brave step […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930