Survival Analysis

Joseph Rickert explains what survival analysis is and shows an example with R:

Looking at the Task View on a small screen is a bit like standing too close to a brick wall – left-right, up-down, bricks all around. It is a fantastic edifice that gives some idea of the significant contributions R developers have made both to the theory and practice of Survival Analysis. As well-organized as it is, however, I imagine that even survival analysis experts need some time to find their way around this task view. (I would be remiss not to mention that we all owe a great deal of gratitude to Arthur Allignol and Aurielien Latouche, the task view maintainers.) Newcomers, people either new to R or new to survival analysis or both, must find it overwhelming. So, it is with newcomers in mind that I offer the following slim trajectory through the task view that relies on just a few packages: survival, KMsurv, Oisurv and ranger

The survival package, which began life as an S package in the late ’90s, is the cornerstone of the entire R Survival Analysis edifice. Not only is the package itself rich in features, but the object created by the Surv() function, which contains failure time and censoring information, is the basic survival analysis data structure in R.

Survival analysis is an interesting field of study.  In engineering fields, the most common use is calculating mean time to failure, but that’s certainly not the only place you’re liable to see it.

Related Posts

Calculating Lifetime Value With R

Sergey Bryl shows how to calculate the lifetime value of a subscription service: Predicting LTV is a common issue for a new, recently launched product/service/application when we don’t have a lot of historical data but want to calculate LTV as soon as possible. Even though we may have a lot of historical data on customer […]

Read More

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More


April 2017
« Mar May »