Building A Recommendation System With Graph Data

Arvind Shyamsundar and Shreya Verma show how to implement a recommender system using SQL Server 2017’s new graph database functionality:

As you can see from the animation, the algorithm is quite simple:

  • First, we identify the user and ‘current’ song to start with (red line)
  • Next, we identify the other users who have also listened to this song (green line)
  • Then we find the other songs which those other users have also listened to (blue, dotted line)
  • Finally, we direct the current user to the top songs from those other songs, prioritized by the number of times they were listened to (this is represented by the thick violet line.)

The algorithm above is quite simple, but as you will see it is quite effective in meeting our requirement. Now, let’s see how to actually implement this in SQL Server 2017.

Click through for animated images as well as an actual execution plan and recommendations for graph query optimization (spoilers:  columnstore all the things).  They also link to the GitHub project where you can try it out yourself.

Related Posts

Obfuscating Continuous Variables

Phil Factor continues his series on data obfuscation: Imagine that you have a table giving invoice values. You will want your spoof data to conform with the same ups and downs of the real data over time. You may be able to get the overall distribution the same as the real data, but the resulting […]

Read More

Creating An Inline Table-Valued Function In SQL Server

Jeanne Combrinck looks at inline table-valued functions in SQL Server: Lets start off with what is a table-valued function (TVF)? A TVF is a dynamic table produced at the time of execution, depending on parameters. Like a view, a TVF creates a result set only when it’s executed, but, unlike a view, it can be […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930