Fitness In Modeling

Leila Etaati notes the Scylla and Charybdis of models:

However, in the most machine learning experiences, we will face two risks :Over fitting and under fitting.
I will explain these two concepts via an example below.
imagine that we have collected information about the number of coffees that have been purchased in a café from 8am to 5pm.

Overfitting tends to be a bigger problem in my experience, but they’re both dangerous.

Related Posts

The Basics Of PCA In R

Prashant Shekhar gives us an overview of Principal Component Analysis using R: PCA changes the axis towards the direction of maximum variance and then takes projection on this new axis. The direction of maximum variance is represented by Principal Components (PC1). There are multiple principal components depending on the number of dimensions (features) in the […]

Read More

Investigating The gcForest Algorithm

William Vorhies describes a new algorithm with strong potential: gcForest (multi-Grained Cascade Forest) is a decision tree ensemble approach in which the cascade structure of deep nets is retained but where the opaque edges and node neurons are replaced by groups of random forests paired with completely-random tree forests.  In this case, typically two of […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930