Logistic Regression In R

Steph Locke has a presentation on performing logistic regression using R:

Logistic regressions are a great tool for predicting outcomes that are categorical. They use a transformation function based on probability to perform a linear regression. This makes them easy to interpret and implement in other systems.

Logistic regressions can be used to perform a classification for things like determining whether someone needs to go for a biopsy. They can also be used for a more nuanced view by using the probabilities of an outcome for thinks like prioritising interventions based on likelihood to default on a loan.

It’s a good introduction to an important statistical method.

Related Posts

dplyr Mutate Quirks

John Mount explains a quirk in dplyr’s mutate function: It is hard for experts to understand how frustrating the above is to a new R user or to a part time R user. It feels like any variation on the original code causes it to fail. None of the rules they have been taught anticipate this, or tell them how […]

Read More

Regular Expression Cheat Sheets

Mara Averick shows off a collection of regular expression guides: There are helpful string-related R packages 📦, stringr (which is built on top of the more comprehensive stringi package) comes to mind. But, at some point in your computing life, you’re gonna need to get down with regular expressions. And so, here’s a collection of some of the Regex-related […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930