Logistic Regression In R

Steph Locke has a presentation on performing logistic regression using R:

Logistic regressions are a great tool for predicting outcomes that are categorical. They use a transformation function based on probability to perform a linear regression. This makes them easy to interpret and implement in other systems.

Logistic regressions can be used to perform a classification for things like determining whether someone needs to go for a biopsy. They can also be used for a more nuanced view by using the probabilities of an outcome for thinks like prioritising interventions based on likelihood to default on a loan.

It’s a good introduction to an important statistical method.

Related Posts

Using DALEX To Explain Black-Box Models

Przemyslaw Biecek explains that there’s more than LIME for explaining black-box models: I’ve heard about a number of consulting companies, that decided to use simple linear model instead of a black box model with higher performance, because ,,client wants to understand factors that drive the prediction’’. And usually the discussion goes as following: ,,We have tried LIME […]

Read More

Comparing Keras In Python Versus R

Dmitry Kisler performs image classification using Keras in both Python and R: From the plots above, one can see that: the accuracy of your model doesn’t depend on the language you use to build and train it (the plot shows only train accuracy, but the model doesn’t have high variance and the bias accuracy is […]

Read More


April 2017
« Mar May »