Feature Improvements In Microsoft R Server 9.1

Kevin Feasel



David Smith gives us a nice roundup of feature improvements in Microsoft R Server 9.1:

Interoperability between Microsoft R Server and sparklyr. You can now use RStudio’s sparklyr package in tandem with Microsoft R Server in a single Spark session

New machine learning models in Hadoop and Spark. The new machine learning functions introduced with Version 9.0 (such as FastRank gradient-boosted trees and GPU-accelerated deep neural networks) are now available in the Hadoop and Spark contexts in addition to standalone servers and within SQL Server.

I have been looking forward to these.

Related Posts

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More

Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R: One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras. In Python’s words, it is the shape of the array. To do a binary […]

Read More


April 2017
« Mar May »