When Binomials Converge

Mala Mahadevan shows an example of the central limit theorem in action, as a large enough sample from a binomial distribution approximates the normal:

An easier way to do it is to use the normal distribution, or central limit theorem. My post on the theorem illustrates that a sample will follow normal distribution if the sample size is large enough. We will use that as well as the rules around determining probabilities in a normal distribution, to arrive at the probability in this case.
Problem: I have a group of 100 friends who are smokers.  The probability of a random smoker having lung disease is 0.3. What are chances that a maximum of 35 people wind up with lung disease?

Click through for the example.

Related Posts

Loops Versus Apply: Speed Comparison

Mike Spencer compares lapply (single core and its multi-core version) versus a for loop in R: But how fast were they? Can we get faster? Thankfully R provides `system.time()` for timing code execution. In order to get faster, it makes sense to use all the processing power our machines have. The ‘parallel’ library has some […]

Read More

Quoted Concatenation In R

John Mount has a quick tip for R users: Here is an R tip. Need to quote a lot of names at once? Use qc(). This function is part of wrapr.

Read More


April 2017
« Mar May »