Logistic Regression With R

Raghavan Madabusi runs through a sample logistic regression:

Input Variables: These variables are called as predictors or independent variables.

  • Customer Demographics (Gender and Senior citizenship)
  • Billing Information (Monthly and Annual charges, Payment method)
  • Product Services (Multiple line, Online security, Streaming TV, Streaming Movies, and so on)
  • Customer relationship variables (Tenure and Contract period)

Output Variables: These variables are called as response or dependent variables. Since the output variable (Churn value) takes the binary form as “0” or “1”, it will be categorized under classification problem in the supervised machine learning.

One of the interesting things in this post was the use of missmap, which is part of Amelia.

Related Posts

Calculating TF-IDF Using Apache Spark

Arseniy Tashoyan shows us how to calculate Term Frequency-Inverse Document Frequency using Apache Spark: TF-IDF is used in a large variety of applications. Typical use cases include: Document search. Document tagging. Text preprocessing and feature vector engineering for Machine Learning algorithms. There is a vast number of resources on the web explaining the concept itself […]

Read More

wrapr 1.5.0 Now On CRAN

John Mount announces wrapr 1.5.0: wrapr includes a lot of tools for writing better R code: let() (let block) %.>% (dot arrow pipe) build_frame() / draw_frame() ( data.frame builders and formatters ) qc() (quoting concatenate) := (named map builder) %?% (coalesce) NEW! %.|% (reduce/expand args) NEW! uniques() (safe unique() replacement) NEW! partition_tables() / execute_parallel() NEW! DebugFnW() (function debug wrappers) λ() (anonymous function builder) John also includes an example using the coalesce operator %?%.

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930