The Basics Of SparkR

Kevin Feasel

2017-04-13

R, Spark

Yanbo Liang has an introductory article on what SparkR is and why you might want to use it:

However, data analysis using R is limited by the amount of memory available on a single machine and further as R is single threaded it is often impractical to use R on large datasets. To address R’s scalability issue, the Spark community developed SparkR package which is based on a distributed data frame that enables structured data processing with a syntax familiar to R users. Spark provides distributed processing engine, data source, off-memory data structures. R provides a dynamic environment, interactivity, packages, visualization. SparkR combines the advantages of both Spark and R.

In the following section, we will illustrate how to integrate SparkR with R to solve some typical data science problems from a traditional R users’ perspective.

This is a fairly introductory article, but gives an idea of what SparkR can accomplish.

Related Posts

dplyr Mutate Quirks

John Mount explains a quirk in dplyr’s mutate function: It is hard for experts to understand how frustrating the above is to a new R user or to a part time R user. It feels like any variation on the original code causes it to fail. None of the rules they have been taught anticipate this, or tell them how […]

Read More

Regular Expression Cheat Sheets

Mara Averick shows off a collection of regular expression guides: There are helpful string-related R packages 📦, stringr (which is built on top of the more comprehensive stringi package) comes to mind. But, at some point in your computing life, you’re gonna need to get down with regular expressions. And so, here’s a collection of some of the Regex-related […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930