Understanding Boosted Trees

Maria Jesus Alonso explains decision trees and their subsequent improvements:

Bagging (or Bootsrap Aggregating), the second prediction technique brought to the BigML Dashboard and API, uses a collection of trees (rather than a single one), each tree built with a different random subset of the original dataset for each model in the ensemble. Specifically, BigML defaults to a sampling rate of 100% (with replacement) for each model. This means some of the original instances will be repeated and others will be left out. Bagging performs well when a dataset has many noisy features and only one or two are relevant. In those cases, Bagging will be the best option.

Random Decision Forests extend the Bagging technique by only considering a random subset of the input fields at each split of the tree. By adding randomness in this process, Random Decision Forests help avoid overfitting. When there are many useful fields in your dataset, Random Decision Forests are a strong choice.

Click through for how boosted trees change this model a bit.

Related Posts

Housing Prices In Ames, Iowa: A Kaggle Competition

Kathryn Bryant and M. Aaron Owen share their Kaggle experiences.  First, Kathryn, et al: The lifecycle of our project was a typical one. We started with data cleaning and basic exploratory data analysis, then proceeded to feature engineering, individual model training, and ensembling/stacking. Of course, the process in practice was not quite so linear and […]

Read More

Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist: Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text […]

Read More

Categories

April 2017
MTWTFSS
« Mar May »
 12
3456789
10111213141516
17181920212223
24252627282930