Time Series Errors

Alex Smolyanskaya explains some common errors when doing time series analysis:

Non-zero model error indicates that our model is missing explanatory features. In practice, we don’t expect to get rid of all model error—there will be some error in the forecast from unavoidable natural variation. Natural variation should reflect all the stuff we will probably never capture with our model, like measurement error, unpredictable external market forces, and so on. The distribution of error should be close to normal and, ideally, have a small mean. We get evidence that an important explanatory variable is missing from the model when we find that the model error doesn’t look like simple natural variation—if the distribution of errors skews one way or another, there are more outliers than expected, or if the mean is unpleasantly large. When this happens we should try to identify and correct any missing or incorrect model features.

It’s an interesting article, especially the bit about cross-validation, which is a perfectly acceptable technique in non-time series models.

Related Posts

Explaining Confidence Intervals

Mala Mahadevan explains what confidence intervals are: Suppose I look at a sampling of 100 americans who are asked if they approve of the job the supreme court is doing. Let us say for simplicity’s sake that the only two answers possible are yes or no. Out of 100, say 40% say yes. As an […]

Read More

Introduction To Bayesian Statistics

Kennie Nybo Pontoppidan has just completed a course on Bayesian statistics: Last month I finished a four-week course on Bayesian statistics. I have always wondered why people deemed it hard, and why I heard that the computations quickly became complicated. The course wasn’t that hard, and it gave a nice introduction to prior/posterior distributions and […]

Read More


March 2017
« Feb Apr »