Building A Neural Net

Kevin Feasel

2017-03-01

R, Spark

Shirin Glander has a great post on using Spark + sparklyr + h2o + rsparkling to build a neural net to study arrhythmia of the heart:

The data I am using to demonstrate the building of neural nets is the arrhythmia dataset from UC Irvine’s machine learning database. It contains 279 features from ECG heart rhythm diagnostics and one output column. I am not going to rename the feature columns because they are too many and the descriptions are too complex. Also, we don’t need to know specifically which features we are looking at for building the models. For a description of each feature, see https://archive.ics.uci.edu/ml/machine-learning-databases/arrhythmia/arrhythmia.names. The output column defines 16 classes: class 1 samples are from healthy ECGs, the remaining classes belong to different types of arrhythmia, with class 16 being all remaining arrhythmia cases that didn’t fit into distinct classes.

Very interesting post.

Related Posts

Icon Maps in R

Laura Ellis shows how you can build maps full of little icons: That was ok, but we should try to make the images more aesthetically pleasing using the magick package. We make each image transparent with the image_transparent() function. We can also make the resulting image a specific color with image_colorize(). I then saved the […]

Read More

LSTM in Databricks

Vedant Jain shows us an example of solving a multivariate time series forecasting problem using LSTM networks: LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons where the […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031