Broadcast Nested Loop Joins In Spark

Kevin Feasel

2017-03-01

Spark

Reynold Xin, et al, debug an interesting test case:

While we were pretty happy with the improvement, we noticed that one of the test cases in Databricks started failing. To simulate a hanging query, the test case performed a cross join to produce 1 trillion rows.

spark.range(1000 * 1000).crossJoin(spark.range(1000 * 1000)).count()

On a single node, we expected this query would run infinitely or “hang.” To our surprise, we started seeing this test case failing nondeterministically because sometimes it completed on our Jenkins infrastructure in less than one second, the time limit we put on this query.

You’re not going to get this performance against a real data set, but it was interesting reading their troubleshooting notes.

Related Posts

Error Handling In Scala

Manish Mishra gives a few examples of how to handle errors in Scala: Try[T] is another construct to capture the success or a failure scenarios. It returns a value in both cases. Put any expression in Try and it will return Success[T] if the expression is successfully evaluated and will return Failure[T] in the other case […]

Read More

When Spark Meets Hive

Anna Martin and Rosaria Silipo look at combining HiveQL and SparkQL: We set our goal here to investigate the age distribution of Maine residents, men and women, using SQL queries. But the question is… on Apache Hive or on Apache Spark? Well, why not both? We could use SparkSQL to extract men’s age distribution and […]

Read More

Categories

March 2017
MTWTFSS
« Feb Apr »
 12345
6789101112
13141516171819
20212223242526
2728293031