Debugging Spark Code

Kevin Feasel

2016-10-25

Spark

Vida Ha has an article on troubleshooting when writing code using the Spark APIs:

When working with large datasets, you will have bad input that is malformed or not as you would expect it. I recommend being proactive about deciding for your use case, whether you can drop any bad input, or you want to try fixing and recovering, or otherwise investigating why your input data is bad.

A filter command is a great way to get only your good input points or your bad input data (If you want to look into that more and debug). If you want to fix your input data or to drop it if you cannot, then using a flatMap() operation is a great way to accomplish that.

This is a good set of tips.

Related Posts

Handling Missing Data In Spark

Igor Sorokin explains how to implement DataFrameNaFunctions: Unfortunately, C&P comes in to play, therefore, if at some point in time a default value for ‘trackLength’ is also required, you may end up changing both of these methods. Another disadvantage is that if another similar method, which requires the same default values, is added, code duplication […]

Read More

Diving Into Spark’s Cost-Based Optimizer

Ron Hu, et al, explain how Spark’s cost-based optimizer works: At its core, Spark’s Catalyst optimizer is a general library for representing query plans as trees and sequentially applying a number of optimization rules to manipulate them. A majority of these optimization rules are based on heuristics, i.e., they only account for a query’s structure and ignore […]

Read More

Categories

October 2016
MTWTFSS
« Sep Nov »
 12
3456789
10111213141516
17181920212223
24252627282930
31