Ewald Cress looks at the new ReaderWriterSpinlock in SQL Server 2016 CU2:

As a quick refresher, a traditional SQLOS spinlock is a 32-bit integer, or of course 64-bit as of 2016, with a value of either zero (lock not acquired) or the 32-bit Windows thread ID of the thread that owns it. All very simple and clean in terms of atomic acquire semantics; the only fun part is the exponential backoff tango that results from a collision.

We have also observed how the 2016 flavour of the SOS_RWLock packs a lot of state into 64 bits, allowing more complicated semantics to be implemented in an atomic compare-and-swap. What seems to be politically incorrect to acknowledge is that these semantics boil down to a simplified version of a storage engine latch, who is the unloved and uncool grandpa nowadays.

Clearly a lot can happen in the middle of 64 bits.

Definitely worth a read, as it seems that this is going to get more play in the years to come.

Related Posts

How LSNs Get Generated

Stuart Moore looks at how SQL Server builds log sequence numbers: If you’ve ever dug down in the SQL Server transaction logs or had to build up restore chains, then you’ll have come across Log Sequence Numbers (LSNs). Ever wondered why they’re so large, why they all look suspiciously the same, why don’t they start […]

Read More

Row Goals On Anti-Joins

Paul White continues his row goals series: The optimizer assumes that people write a semi join (indirectly e.g. using EXISTS) with the expectation that the row being searched for will be found. An apply semi join row goal is set by the optimizer to help find that expected matching row quickly. For anti join (expressed e.g. using NOT EXISTS) the optimizer’s assumption is that […]

Read More


October 2016
« Sep Nov »