Sparklyr

Kevin Feasel

2016-10-04

R, Spark

RStudio has announced an interface between R and Apache Spark, named sparklyr:

Over the past couple of years we’ve heard time and time again that people want a native dplyr interface to Spark, so we built one! sparklyr also provides interfaces to Spark’s distributed machine learning algorithms and much more. Highlights include:

  • Interactively manipulate Spark data using both dplyr and SQL (via DBI).

  • Filter and aggregate Spark datasets then bring them into R for analysis and visualization.

  • Orchestrate distributed machine learning from R using either Spark MLlib or H2O SparkingWater.

  • Create extensions that call the full Spark API and provide interfaces to Spark packages.

  • Integrated support for establishing Spark connections and browsing Spark DataFrames within the RStudio IDE.

So what’s the difference between sparklyr and SparkR?

This might be the package I’ve been awaiting.

Related Posts

Error Handling In Scala

Manish Mishra gives a few examples of how to handle errors in Scala: Try[T] is another construct to capture the success or a failure scenarios. It returns a value in both cases. Put any expression in Try and it will return Success[T] if the expression is successfully evaluated and will return Failure[T] in the other case […]

Read More

An Introduction To seplyr

John Mount guest blogs on the Revolutions blog about seplyr: seplyr is an R package that supplies improved standard evaluation interfaces for many common data wrangling tasks. The core of seplyr is a re-skinning of dplyr‘s functionality to seplyr conventions (similar to how stringr re-skins the implementing package stringi). Read on for a couple of examples of where seplyr can make it easier for you to […]

Read More

Categories

October 2016
MTWTFSS
« Sep Nov »
 12
3456789
10111213141516
17181920212223
24252627282930
31