Predictive Maintenance Solution Template

Kevin Feasel

2016-09-14

R

Jaya Mathew has a SQL Server R Services template for predictive maintenance:

To illustrate the scenario, we will focus on companies who operate machines which encounter mechanical failures. These failures lead to downtime which has cost implications on any business, hence most companies are interested in predicting the failures ahead of time so that they can proactively prevent them. This scenario is aligned with an existing R Notebook published in the Cortana Intelligence Gallery but works with a larger dataset where we will focus on predicting component failures of a machine using raw telemetry, maintenance logs, previous errors/failures and additional information about the make/model of the machine. This scenario is widely applicable for almost any industry which uses machines that need maintenance. A quick overview of typical feature engineering techniques as well as how to build a model will be discussed below.

Understanding when machines are likely to break down is a very interesting statistical problem.  Check out the template.

Related Posts

Exploratory Data Analysis with inspectdf

Laura Ellis continues a dive into Exploratory Data Analysis, this time using the inspectdf package: I like this package because it’s got a lot of functionality and it’s incredibly straightforward to use. In short, it allows you to understand and visualize column types, sizes, values, value imbalance & distributions as well as correlations. Better yet, […]

Read More

MRAN Changes and a Survey

David Smith discusses potential changes to MRAN: As CRAN has grown and changes to packages have become more frequent, maintaining MRAN is an increasingly resource-intensive process. We’re contemplating changes, like changing the frequency of snapshots, or thinning the archive of snapshots that haven’t been used. But before we do that we’d  like to hear from […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930