Throwing Hardware At The Problem

Erik Darling says get more RAM:

I’m not saying you need a 1:1 relationship between data and memory all the time, but if you’re not caching the stuff users are, you know, using, in an efficient way, you may wanna think about your strategy here.

  • Option 1: Buy some more RAM
  • Option 2: Buy an all flash array

You’ll still need to blow some development time on tuning queries and indexes, but hardware can usually bridge the gap if things are already critical.

Looking at hardware is a reasonable approach.  The best bet is to satisfy the most pressing need at the margin.  Sometimes that means more (or better) hardware, sometimes it means tuning queries, and sometimes it means application-level changes to retrieve data differently.

Related Posts

AMD and Server CPUs

Glenn Berry has an interesting post on why he’s seriously considering recommending AMD CPUs to people: AMD claims a 15% Instructions Per Clock (IPC) increase between the desktop Zen+ and Zen 2 generations, and we are likely to see a similar increase between the previous AMD EPYC 7001 “Naples” and the AMD EPYC 7002 series […]

Read More

Flink’s Network Stack

Nico Kruber dives into the internals of Apache Flink’s network stack: Flink’s network stack is one of the core components that make up the flink-runtime module and sit at the heart of every Flink job. It connects individual work units (subtasks) from all TaskManagers. This is where your streamed-in data flows through and it is therefore crucial […]

Read More

Categories

September 2016
MTWTFSS
« Aug Oct »
 1234
567891011
12131415161718
19202122232425
2627282930