Logging Python-Style

Kevin Feasel



Jonathan Callahan wants to generate nice-looking logs in R:

Our real world scenario involves R scripts that process raw smoke monitoring data that is updated hourly. The raw data comes from various different instruments, set up by different agencies and transmitted over at least two satellites before eventually arriving on our computers.

Data can be missing, delayed or corrupted for a variety of reasons before it gets to us. And then our R scripts perform QC based on various columns available in the raw (aka “engineering level”) data.

Logging is one of the differences between toy code (even very useful toy code) and production-quality code.  Read on for an easy way to do this in R.

Related Posts

Linear Discriminant Analysis

Jake Hoare explains Linear Discriminant Analysis: Linear Discriminant Analysis takes a data set of cases (also known as observations) as input. For each case, you need to have a categorical variable to define the class and several predictor variables (which are numeric). We often visualize this input data as a matrix, such as shown below, with each case being a row and each variable a column. In this […]

Read More

Azure Data Lake Store File Management With httr

Leila Etaati shows how to generate RESTful statements in R using httr: In this post, I am going to share my experiment in how to do file management in ADLS using R studio, to do this you need to have below items 1. An Azure subscription 2. Create an Azure Data Lake Store Account 3. […]

Read More


August 2016
« Jul Sep »