R Or M?

Kevin Feasel

2016-08-17

Power BI, R

Ryan Wade gives a few scenarios in which R might be a better language choice than M for Power BI integration:

When referring to what can be done in iOS, Apple often say that there is an “app” for that. Likewise, when R developers refer to what can be done in R, we often say that there is a “package” for that. For instance:

· If one needs to scrap data from the web there are packages for that (rvest, rcurl, and others)

· If one needs to make complicated transformations to their data there are packages for that (dplyr, tidyr, lubrdiate, stringr, and others)

I like the F#-ness of M, but I admit that I’m happy there’s some fairly close R integration within Power BI, as that means there’s one fewer language I need to learn right now…

Related Posts

Calculating Lifetime Value With R

Sergey Bryl shows how to calculate the lifetime value of a subscription service: Predicting LTV is a common issue for a new, recently launched product/service/application when we don’t have a lot of historical data but want to calculate LTV as soon as possible. Even though we may have a lot of historical data on customer […]

Read More

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More

Categories

August 2016
MTWTFSS
« Jul Sep »
1234567
891011121314
15161718192021
22232425262728
293031