Kevin Feasel



Jules Damji shows off SparkSession:

Beyond a time-bounded interaction, SparkSession provides a single point of entry to interact with underlying Spark functionality and allows programming Spark with DataFrame and Dataset APIs. Most importantly, it curbs the number of concepts and constructs a developer has to juggle while interacting with Spark.

In this blog and its accompanying Databricks notebook, we will explore SparkSession functionality in Spark 2.0.

This looks to be an easier method for integrating various parts of Spark in one user session.  Read the whole thing.

Related Posts

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

ElasticMapReduce And RStudio

Tanzir Musabbir demonstrates how to set up Amazon ElasticMapReduce to include an RStudio edge node: RStudio Server provides a browser-based interface for R and a popular tool among data scientists. Data scientist use Apache Spark cluster running on  Amazon EMR to perform distributed training. In a previous blog post, the author showed how you can install RStudio Server on Amazon […]

Read More


August 2016
« Jul Sep »