Multi-Column, Auto-Created Statistics

Shaun J. Stuart looks into a scenario in which it appears that multi-column, auto-created statistics were generated:

Wow.. That sure looks like three auto-created, multi-column statistics! We have three stats: stats_ids 3, 4, and 5. The sys.stats_column table contains one row for each column that is in a statistic, so multiple rows for a single statistic (i.e., a single stats_id value), indicate multiple columns in that stat. Indeed, the column_id values indicate the table columns contained the stat. So stats_id 3 contains columns VersionMajor and ApplicationID (column_ids 3 and 1), stats_id 4 contains columns VersionMinor and ApplicationID (column_ids 4 and 1), and stats_id 5 contains columns VersionRevision and ApplicationID (column_ids 5 and 1). And, clearly, the auto_created flag is true, so these three stats were auto-created. What’s going on?

Read on for the answer.

Related Posts

The Importance of Cardinality

Bert Wagner shows us why cardinality is important to understand when indexing data: When building indexes for your queries, the order of your index key columns matters.  SQL Server can make the most effective use of an index if the data in that index is stored in the same order as what your query requires for […]

Read More

Calculating Skew In SQL

Lukas Eder shows how you can use PERCENTILE_DISC to calculate skewness in SQL: In RDBMS, we sometimes use the term skew colloquially to mean the same thing as non-uniform distribution, i.e. a normal distribution would also be skewed. We simply mean that some values appear more often than others. Thus, I will put the term […]

Read More


August 2016
« Jul Sep »