Logical Data Models

Kevin Kline discusses logical data modeling:

In a recent blog post entitled Is Logical Data Modeling Dead?, Karen Lopez (b | t) comments on the trends in the data modeling discipline and shares her own processes and preferences for logical data modeling (LDM). Her key point is that LDMs are on the decline primarily because they (and their creators) have failed to adapt to changing development processes and trends.

I love all things data modeling. I found data models to be a soothing and reassuring roadmap that underpinned the requirements analysis and spec writing of the Dev team, as well as a supremely informative artifact of the Dev process which I would constantly refer to when writing new T-SQL code and performing maintenance. However, as time has passed, I have been surprised by how far it has fallen out of favor.

This is an interesting discussion.  I’m not sure I’ve ever created a true logical data model.  I’ve worked with systems which could potentially take advantage of them, but they never hit the top of the priority list.

Related Posts

Event Sourcing On Kafka

Adam Warski shows how you can use Apache Kafka as your event sourcing data source: There’s a number of great introductory articles, so this is going to be a very brief introduction. With event sourcing, instead of storing the “current” state of the entities that are used in our system, we store a stream of events that relate to these […]

Read More

Avoid Scalar Functions In Computed Columns

Daniel Hutmacher shows why you should not include scalar functions inside computed column definitions: Scalar functions can be a real headache when you’re performance tuning. For one, they don’t parallelize. In fact, if you use a scalar function in a computed column, it will prevent any query that uses that table from going parallel – even if you […]

Read More


February 2016
« Jan Mar »