Asking The Right Question

Buck Woody argues that the hardest thing about data science is asking the right question:

When I started down the path of learning Data Science, I was nervous. I have to work hard at math – it’s a skill I love but one that does not come naturally to me. I was nervous because I thought the most daunting task I would face in Data Science waslearning all the algebra, statistics, and other maths I would need to do the job.

But I was wrong.

Math isn’t the hardest thing in Data Science. Actually, since it’s so mature, and documented, and well-known, it’s quite possibly the easiest thing to conquer in the skillset. No, the hardest thing about Data Science is asking the right question.

I’ll lodge a bit of a disagreement here.  I’m okay with the argument that asking the right question is the toughest part, but the math’s not particularly easy either…  Knowing when to use which distribution, which model, and which parameters requires a definite amount of skill.

Related Posts

K Nearest Cliques

Vincent Granville explains an algorithm built around finding cliques of data points: The cliques considered here are defined by circles (in two dimensions) or spheres (in three dimensions.) In the most basic version, we have one clique for each cluster, and the clique is defined as the smallest circle containing a pre-specified proportion p of the points […]

Read More

Building An Image Recognizer With R

David Smith has a post showing how to build an image recognizer with R and Microsoft’s Cognitive Services Library: The process of training an image recognition system requires LOTS of images — millions and millions of them. The process involves feeding those images into a deep neural network, and during that process the network generates […]

Read More

Categories

January 2016
MTWTFSS
« Dec Feb »
 123
45678910
11121314151617
18192021222324
25262728293031